
Rust for C++ Programmers

Vinzent Steinberg

C++ User Group, FIAS
April 29, 2015

1 / 27



Motivation

I C++ has a lot of problems
I C++ cannot be fixed

(because of backwards compatibility)
I Rust to the rescue!

2 / 27



What is Rust?

Source: https://github.com/rust-lang/rust-www/tree/gh-pages/logos

3 / 27



What is Rust?

I systems programming language
I developed by Mozilla, Samsung and the Rust community
I designed to replace C++ in Mozilla’s next-generation browser

engine

Promises

I blazingly fast
I memory safety without garbage collection
I concurrency without data races

4 / 27



What is Rust?

I systems programming language
I developed by Mozilla, Samsung and the Rust community
I designed to replace C++ in Mozilla’s next-generation browser

engine

Promises

I blazingly fast
I memory safety without garbage collection
I concurrency without data races

4 / 27



Popularity

Source: https://github.com/showcases/programming-languages?s=stars

5 / 27



Motivating Application: Servo

Our goal is nothing less than building the fastest and most
secure browser engine, and we aim to succeed by miles,
not inches. We aim for double the performance of current
engines, with no crashes.

– Servo job opening

6 / 27



Servo: Parallelized Rendering

Source: http://blog.servo.org/2015/04/02/twis-29/

7 / 27



Hello World

fn main() {
// This is a comment.
println!("Hello, World!");

}

I syntax similar to C++
I part of STL automatically used => println! already in scope
I ! means macro

(necessary because no function overloading in Rust)

8 / 27



Functions and Variables

fn add(a: i32, b: i32) -> i32 {
a + b // equivalent to `return a + b;`

}

fn main() {
// Create a constant variable of type `i32`.
let answer: i32 = add(39, 3);
println!("The answer is {}.", answer);

}

9 / 27



Functions and Variables

fn add(a: i32, b: i32) -> i32 {
a + b

}

fn main() {
// Create a constant variable of type `i32`.
let answer = add(39, 3);
//^ type inferred from context,
// like `auto` in C++
println!("The answer is {}.", answer);

}

10 / 27



Loops and Mutability

/// Sum all integers from 1 to 100.
fn solve_gauss_homework() -> i32 {

let mut sum = 0;
for i in 1..101 {

sum += i;
}
sum

}

I const by default
I like C++11/Python loops
I generated code as efficient as a C loop

11 / 27



if and else

fn signum(x: i32) -> i32 {
let mut sign;
if x < 0 {

sign = -1;
} else if x > 0 {

sign = 1;
} else {

sign = 0;
}
sign

}

I compiler checks sign is always initialized

12 / 27



if and else

fn signum(x: i32) -> i32 {
let sign =

if x < 0 {
-1

} else if x > 0 {
1

} else {
0

};
sign

}

I if {...} else {...} is an expression
(replaces ternary operator)

13 / 27



enum and match
enum Ordering { Less, Equal, Greater }

fn cmp(a: i32, b: i32) -> Ordering;

fn guess_secret_number(guessed_number: i32) {
let secret_number = 42;
match cmp(secret_number, guessed_number) {

Ordering::Less
=> println!("My number is smaller."),

Ordering::Greater
=> println!("My number is bigger."),

Ordering::Equal
=> println!("You guessed my number!"),

}
}

I similar to C++’s switch (but without fallthrough)
I matches have to be exhaustive
I enum in Rust: type-safe combination of C++’s enum and

union

14 / 27



Generalized enums
enum Option<T> {

Some(T), // Some value `T`
None // No value

}

fn print_optional_integer(x: Option<i32>) {
match x {

Some(i) => println!("Got an integer: {}", i),
None => println!("Got nothing."),

}
}

I can be used for pointers, better than NULL:
I None has to be considered in match

(cannot be forgotten)
I pointers are always valid

(no redundandent checks)
15 / 27



Ownership

fn make_vec() {
let mut vec = Vec::new();
//^ owned by `make_vec`'s scope
vec.push(0);
vec.push(1);
// scope ends, `vec` is destroyed

}

Source: http://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

I like std::vector in C++
I auto cannot do this

(vec’s type inferred from elements being pushed onto it)

16 / 27



Passing Ownership

fn make_vec() -> Vec<i32> {
let mut vec = Vec::new();
vec.push(0);
vec.push(1);
vec // transfer ownership to the caller

}

I move semantics by default
(similar to C++’s unique_ptr, but without runtime overhead)

I primitive types have copy semantics (i.e. numbers)

17 / 27



Passing Ownership

fn print_vec(vec: Vec<i32>) {
// the `vec` parameter is part of this scope,
// so it's owned by `print_vec`
for i in vec {

println!("{} ", i)
}
// now, `vec` is deallocated

}

fn use_vec() {
let vec = make_vec();
//^ take ownership of the vector
print_vec(vec);
//^ pass ownership to `print_vec`

}

18 / 27



Passing Ownership
fn use_vec() {

let vec = make_vec();
//^ take ownership of the vector
print_vec(vec);
//^ pass ownership to `print_vec`
// (`vec` is moved, not copied)

for i in vec { // continue using `vec`
println!("{} ", i * 2)

}
}

I results in compiler error:

error: use of moved value: `vec`

for i in vec {
^~~

19 / 27



Borrowing

I print_vec destroys vectors, instead of temporary access
I introduce concept of borrowing
I compiler checks that leases do not outlive objects being

borrowed

20 / 27



Borrowing
fn print_vec(vec: &Vec<i32>) {

// the `vec` parameter is borrowed for this scope
for i in vec {

println!("{} ", i)
}
// now, the borrow ends

}

fn use_vec() {
let vec = make_vec(); // take ownership of the vector
print_vec(&vec); // lend access to `print_vec`
for i in vec { // continue using `vec`

println!("{} ", i * 2)
}
// `vec` is destroyed here

}

21 / 27



Pointers in Rust

I references valid for limited scope (checked by compiler)
I two kinds of reference:

I immutable &T: sharing but no mutation
I mutable &mut T: mutation but no sharing

I “raw” pointers in unsafe Rust
I *T: anything goes, like in C++
I not memory-safe
I can only be used inside unsafe { ... } blocks

22 / 27



Pointers in Rust

I references valid for limited scope (checked by compiler)
I two kinds of reference:

I immutable &T: sharing but no mutation
I mutable &mut T: mutation but no sharing

I “raw” pointers in unsafe Rust
I *T: anything goes, like in C++
I not memory-safe
I can only be used inside unsafe { ... } blocks

22 / 27



Mutable Borrowing

fn push_all(from: &Vec<i32>, to: &mut Vec<i32>) {
for i in from {

to.push(*i);
}

}

I what if push_all(&vec, &mut vec)?

23 / 27



Mutable Borrowing

I what if push_all(&vec, &mut vec)?
I elements pushed onto vector
I vector grows, copying elements over
I iterator with dangling pointer into old memory
I Disaster!

I compiler checks that whenever a mutable borrow is
active, no other borrows of the object are active

error: cannot borrow `vec` as mutable because it is also
borrowed as immutable

push_all(&vec, &mut vec);
^~~

24 / 27



Mutable Borrowing

I what if push_all(&vec, &mut vec)?
I elements pushed onto vector
I vector grows, copying elements over
I iterator with dangling pointer into old memory
I Disaster!

I compiler checks that whenever a mutable borrow is
active, no other borrows of the object are active

error: cannot borrow `vec` as mutable because it is also
borrowed as immutable

push_all(&vec, &mut vec);
^~~

24 / 27



Thread Safety

I data races prevented by ownership semantics
I compiler rejects programs violating thread safety

(cannot share data that is not thread-safe)
I safely shared memory by using special types

(like C++’s shared_ptr)
I safe communication between threads

25 / 27



Thread Safety

I data races prevented by ownership semantics
I compiler rejects programs violating thread safety

(cannot share data that is not thread-safe)
I safely shared memory by using special types

(like C++’s shared_ptr)
I safe communication between threads

25 / 27



Summary

I sharing without mutation, mutation without sharing
⇒ memory safety, no data races

I performance comparable to C++
I strong type system (Let the compiler do the work for you.)
I first stable release in 16 days

26 / 27



Resources

I The Rust Book
http://doc.rust-lang.org/book/

I Rust by Example
http://rustbyexample.com

I The Rust Programming Language Blog:
https://blog.rust-lang.org
See “Fearless Concurrency with Rust” for the section on
ownership.

27 / 27

http://doc.rust-lang.org/book/
http://rustbyexample.com
https://blog.rust-lang.org
http://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html


Features

I modern systems programming: designed ground up instead of
evolved over decades

I explicit ownership (lifetimes checked by the compiler)
I no data races
I no segfaults

I modules (with automatic dependencies and online repository),
no headers

I built-in testing/benchmarking
I built-in documentation generator
I excellent first-party documentation
I traits (better than classes, constrained generics)
I closures (like lambdas in C++)
I channels (threading by message passing)

28 / 27



Differences to C++

I move by default (less unnecessary copies)
I containers use views (much less copies of strings)
I private by default
I no overloading (of functions)
I no implicit conversions (affects numbers and references, see

gotchas)
I implicit dereference
I explicitly declared unsafe code
I uninitalized variables are impossible
I warning if violating conventions (snake_case vs CamelCase)

29 / 27



Gotchas for C++ Programmers

I std::mem::swap(a, b) vs std::mem::swap(&mut a,
&mut b)

I references in Rust have to be explicit!

30 / 27



Error Handling
enum Result {

Ok(File),
Err(String),

}

fn open(path: &String) -> Result;

fn main() {
let result = open("data.txt");
match result {

Ok(_)
=> println!("Opened file successfully!"),

Err(why)
=> println!("Could not open file: {}", why),

}
}

31 / 27



Message Passing
fn send<T: Send>(chan: &Channel<T>, t: T);
fn recv<T: Send>(chan: &Channel<T>) -> T;

fn main() {
let mut chan: Channel<Vec<i32>> = ...;
let mut vec = Vec::new();

do_some_computation(&mut vec);

send(&chan, vec);
print_vec(&vec);

}

I results in compiler error:

Error: use of moved value `vec`

27 / 27


